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Professors Gladwell and Willms must be congratulated for their interesting and important
contribution [1].

The writers agree with the author’s conclusion: ‘‘the circular membrane is not a typical
membrane’’ [1] but it may be of interest to mention that a basic relation exists between
the fundamental frequency coefficient of a membrane of arbitrary shape and that of a
membrane of circular shape.

As shown by Szego [2],
l11 Q a0/a0, (1)

where a0 is the first root of Bessel’s function of the first kind and order zero (the
fundamental frequency coefficient of a circular membrane).

a0 is the coefficient of the first term of the infinite series which maps a unit circle on
to the arbitrary shape; see Figure 1.

For instance, in the case of a square membrane, the mapping function is given by [3]

z= x+iy=1·078ap [j− 1
10j

5 + 1
24j

9 − 5
208j

13 + · · ·], (2)

where ap is the apothem of the square. Consequently,

l11 Q
2·4048
1·078ap

=
2·2308

ap
, (3)

Figure 1. Conformal mapping of a unit circle into an arbitrary shape by means of an infinite series:

z= f (j)= s
a

n=0

anjn+1.
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Figure 2. A square membrane with a concentric circular perforation [3].

the exact eigenvalue being

l11 =
2·2214

ap
. (4)

The upper bound (3) is, in this case, less than 0·5% higher than the exact value.
In the case of a doubly connected membrane of fixed edges, it has recently been shown [4]

that
l11 E a11/a0, (5)

where a0 is the coefficient of the (j) term in the Laurent expansion which maps the given
doubly connected membrane onto a circular annulus in the j-plane; namely,

z= x+iy= s
+a

n=−a

anj
1+ ns, (6)

and where s is the number of axes of symmetry of the configuration (s=4 in the case
of equation (2) and Figure 2). The parameter a11 is the frequency coefficient of the
corresponding circular, annular membrane.
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What the authors have stated is true, but is completely irrelevant to our paper, which was
concerned with mode shapes, and not with eigenfrequencies.


